6 research outputs found

    Direction of Arrival Estimation in Low-Cost Frequency Scanning Array Antenna Systems

    Get PDF
    RÉSUMÉ Cette thĂšse propose des mĂ©thodes d'estimation de la direction d'arrivĂ©e (DOA) et d'amĂ©lioration de la rĂ©solution angulaire applicables aux antennes Ă  balayage de frĂ©quence (Frequency Scanning Antenna ou FSA) et prĂ©sente un dĂ©veloppement analytique et des confirmations expĂ©rimentales des mĂ©thodes proposĂ©es. Les FSA sont un sous-ensemble d'antennes Ă  balayage Ă©lectronique dont l'angle du faisceau principal change en faisant varier la frĂ©quence des signaux. L'utilisation des FSA est un compromis entre des antennes Ă  balayage de phase (phased arrays antennas) plus coĂ»teuses et plus complexes, et des antennes Ă  balayage mĂ©canique plus lentes et non agiles. Bien que l'agilitĂ© et le faible coĂ»t des FSA les rendent un choix plausible dans certaines applications, les FSA Ă  faible coĂ»t peuvent ne pas ĂȘtre conformes aux exigences souhaitĂ©es pour l'application cible telles que les exigences de rĂ©solution angulaire. Ainsi, cette recherche tente d'abord de caractĂ©riser les capacitĂ©s de rĂ©solution angulaire de certains systĂšmes d'antennes FSA sĂ©lectionnĂ©s. Elle poursuit en explorant des modifications ou extensions aux algorithmes de super-rĂ©solution capables d'amĂ©liorer la rĂ©solution angulaire de l'antenne et de les adapter pour ĂȘtre appliquĂ©s aux FSA. Deux mĂ©thodes d'estimation de la rĂ©solution angulaire, l'estimation du maximum de vraisemblance (Maximum Likelihood ou ML) et la formation du faisceau de variance minimale de Capon (Minimum Variance Beamforming ou MVB) sont Ă©tudiĂ©es dans cette recherche. Les deux mĂ©thodes sont modifiĂ©es pour ĂȘtre applicables aux FSA. De plus, les mĂ©thodes d'Ă©talonnage et de prĂ©-traitement requises pour chaque mĂ©thode sont Ă©galement introduites. Les rĂ©sultats de simulation ont montrĂ© qu'en sĂ©lectionnant des paramĂštres corrects, il est possible d'amĂ©liorer la rĂ©solution angulaire au-delĂ  de la limitation de la largeur de faisceau des FSA en utilisant les deux mĂ©thodes. Les critĂšres pour lesquels chaque mĂ©thode fonctionne le mieux sont discutĂ©s et l'analyse pour justifier les conditions prĂ©sentĂ©es est donnĂ©e.----------ABSTRACT This research investigates direction of arrival (DOA) estimation and angular resolution enhancement methods applicable to frequency scanning antennas (FSA) and provides analytical development and experimental validation for the proposed methods. FSAs are a subset of electronically scanning antennas, which scan the angle of their main beam by varying the frequency of the signals. Using FSA is a trade-off between more expensive and complex phase array antennas and slower and non-agile mechanical scanning antennas. Although agility and low-cost of FSAs make them a plausible choice in some application, low-cost FSAs may not comply with the desired requirements for the target application such as angular resolution requirements. Thus, this research attempts to first characterize the angular resolution capabilities of some selected FSA antenna systems, and then modify or extend super-resolution algorithms capable of enhancing the angular resolution of the antenna and adapt them to be applied to FSAs. Two angular resolution estimation methods, maximum likelihood estimation (ML) and Capon minimum variance beamforming (MVB), are studied in this research. Both methods are modified to be applicable to FSAs. In addition, the calibration and pre-processing methods required for each method are also introduced. Simulation results show that by selecting correct parameters, it is possible to enhance angular resolution beyond the beamwidth limitation of FSAs using both methods. The criteria for which each method performs the best are discussed and an analysis supporting the presented conditions are given. The proposed methods are also validated using the measured antenna radiation pattern of an 8-element FSA which is built based on a composite right/left-handed (CRLH) waveguide. In addition, the experimental results using a beam scanning parabolic reflector antenna using a frequency multiplexed antenna feed is given. The design limitations of this antenna reduces the performance of angular resolution enhancement methods. Therefore, a hybrid scanning system combining mechanical and frequency scanning using the beam scanning reflector antenna is also proposed

    Abnormal Motion Detection in a Real-Time Smart Camera System

    No full text
    This paper discusses a method for abnormal motion detection and its real-time implementation on a smart camera. Abnormal motion detection is a surveillance technique that only allows unfamiliar motion patterns to result in alarms. Our approach has two phases. First, normal motion is detected and the motion paths are trained, building up a model of normal behaviour. Feed-forward neural networks are here used for learning. Second, abnormal motion is detected by comparing the current observed motion to the stored model. A complete demonstration system is implemented to detect abnormal paths of persons moving in an indoor space. As platform we used a wireless smart camera system containing an SIMD (Single. Instruction Multiple-Data) processor for real-time detection of moving persons and an 8051 microcontroller for implementing the neural network. The 8051 also functions as camera host to broadcast abnormal events using Zig Bee to a main network system

    Behavior Modeling by Neural Networks

    No full text
    Modeling of human and animal behavior is of interest for a number of diagnostic purposes. Convolutional neural networks offer a constructive approach allowing learning on a limited number of examples. Chaotic tendencies make that learning is not always successful. The paper looks into a number of applications to find the reason for this anomaly and identifies the need for behavioral references to provide determinism in the diagnostic model
    corecore